Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Manganese (Mn) oxides, widely found in aquatic and terrestrial environments, play crucial roles in natural ecosystems and in environmental processes. Previously, it was believed that naturally abundant Mn oxides originated through biotically mediated processes. However, we have revealed the significance of photochemically induced abiotic oxidation of Mn2+(aq) to Mn(IV) oxides. This study further elucidates the photochemically induced co-oxidation of aqueous Mn2+ and cobalt (Co2+), which leads to the predominant formation of Mn(IV)–Co(III) oxide nanosheets. Both pair distribution function analysis and X-ray absorption spectra provide evidence that Co2+ is mainly oxidized to Co(III) within the plane of the Mn oxide structure, where it forms double-edge-sharing arrangements. Additionally, the initial concentration of Co2+ greatly influences the extent of Co incorporation within the final Mn–Co oxides and Mn oxidation states. Increased Co incorporation correlates with a higher concentration of oxygen vacancies within the Mn oxide structures, which reduces their band gap and significantly influences the reactivity of Mn oxides, governing their ability to participate in pollutant degradation and redox transformations. This study advances our understanding of the mechanism of formation of Co-incorporated Mn oxides in the natural environment and provides insights into their occurrence in the natural environment and their applications in environmental processes.more » « lessFree, publicly-accessible full text available June 3, 2026
-
Much of the large quantity of plastics produced annually is discharged into the environment, where it degrades into tiny plastic debris (e.g., macro-, micro-, and nano-plastics). There are increasing concerns about the adverse effects of these plastics. In particular, nanoplastics are more prone to interacting with surrounding substances, because of their substantially larger surface areas and consequent increased exposure of surface functional groups. However, the oxidative roles of nanoplastics in inducing redox reactions with heavy or transition metals remain poorly understood. In this study, we investigated how Mn2+ was oxidized by the photolysis of polystyrene (PS)-based nanoplastics. We found that peroxyl (ROO•) and superoxide radicals (O2•−) were generated during the photolysis of PS-based nanoplastics, and they were primarily responsible for Mn oxidation. In addition, different plastic particle sizes and functional groups influenced the formation of radicals and the growth and mineral phases of Mn oxide solids. This study provides insights into the occurrence and diversity of Mn oxides in nature. These new findings also enhance our understanding of the oxidative roles of nanoplastics in generating reactive oxygen species (ROS) and how this may apply to the oxidation of other redox-active metal ions and essential chemicals, which could disrupt ecosystems and affect elemental cycling. Moreover, the production of ROS from nanoplastics in the presence of light endangers marine life and human health, and also potentially affects the mobility of the nanoplastics in the environment via redox reactions, which in turn might negatively impact their environmental remediation.more » « less
-
Manganese (Mn) oxides are abundant in aquatic and terrestrial environments, where they play significant roles in redox cycling and biological metabolisms. We recently observed that Mn oxides were homogenously formed during the abiotic oxidation of Mn2+(aq) to Mn(IV) by O2•− via nitrate photolysis, at a rate comparable to that of biotic Mn oxides formation. On the other hand, for the heterogeneous formation of Mn oxides, the presence of a substrate can alter the required thermodynamic driving force, which may affect their crystalline phases and further influence the oxidative capability of redox cycling in environmental systems. However, little is known about the photochemically-induced heterogeneous formation of Mn oxides on substrates. In this study, we investigated the heterogeneous formation of Mn oxides on a quartz substrate in the presence of two environmentally abundant cations, Na+ and Mg2+. In contrast to homogeneously generated Mn oxides, the heterogeneously formed Mn oxides displayed earlier crystalline phase evolutions and morphological changes over time. Additionally, the coexistence of Na+ and Mg2+ ions greatly affected the initial crystalline phase and the phase evolution, as well as the surface morphologies of the Mn oxides. These discoveries contribute to our understanding of how various Mn oxides form in nature and provide insight into the processes involved in manufacturing specific Mn oxide crystalline structures for engineering applications.more » « less
-
Every year, large quantities of plastics are produced and used for diverse applications, growing concerns about the waste management of plastics and their release into the environment. Plastic debris can break down into millions of pieces that adversely affect natural organisms. In particular, the photolysis of micro/nanoplastics can generate reactive oxygen species (ROS). However, their oxidative roles in initiating redox chemical reactions with heavy and transition metals have received little attention. In this study, we investigated whether the photolysis of polystyrene (PS) nanoplastics can induce the oxidation of Mn2+(aq) to Mn oxide solids. We found that PS nanoplastics not only produced peroxyl radicals (ROO•) and superoxide radicals (O2•−) by photolysis, which both play a role in unexpected Mn oxidation, but also served as a substrate for facilitating the heterogeneous nucleation and growth of Mn oxide solids and controlling the formation rate and crystalline phases of Mn oxide solids. These findings help us to elucidate the oxidative roles of nanoplastics in the oxidation of redox-active metal ions. The production of ROS from nanoplastics in the presence of light can endanger marine life and human health, and affect the mobility of the nanoplastics in the environment via redox reactions, which in turn may negatively impact their environmental remediation.more » « less
An official website of the United States government

Full Text Available